Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1259037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385029

RESUMO

Macrophages can exhibit pro-inflammatory or pro-reparatory functions, contingent upon their specific activation state. This dynamic behavior empowers macrophages to engage in immune reactions and contribute to tissue homeostasis. Understanding the intricate interplay between macrophage motility and activation status provides valuable insights into the complex mechanisms that govern their diverse functions. In a recent study, we developed a classification method based on morphology, which demonstrated that movement characteristics, including speed and displacement, can serve as distinguishing factors for macrophage subtypes. In this study, we develop a deep learning model to explore the potential of classifying macrophage subtypes based solely on raw trajectory patterns. The classification model relies on the time series of x-y coordinates, as well as the distance traveled and net displacement. We begin by investigating the migratory patterns of macrophages to gain a deeper understanding of their behavior. Although this analysis does not directly inform the deep learning model, it serves to highlight the intricate and distinct dynamics exhibited by different macrophage subtypes, which cannot be easily captured by a finite set of motility metrics. Our study uses cell trajectories to classify three macrophage subtypes: M0, M1, and M2. This advancement holds promising implications for the future, as it suggests the possibility of identifying macrophage subtypes without relying on shape analysis. Consequently, it could potentially eliminate the necessity for high-quality imaging techniques and provide more robust methods for analyzing inherently blurry images.

2.
Cell Rep ; 42(12): 113505, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041810

RESUMO

The composite material-like extracellular matrix (ECM) in the sinoatrial node (SAN) supports the native pacemaking cardiomyocytes (PCMs). To test the roles of SAN ECM in the PCM phenotype and function, we engineered reconstructed-SAN heart tissues (rSANHTs) by recellularizing porcine SAN ECMs with hiPSC-derived PCMs. The hiPSC-PCMs in rSANHTs self-organized into clusters resembling the native SAN and displayed higher expression of pacemaker-specific genes and a faster automaticity compared with PCMs in reconstructed-left ventricular heart tissues (rLVHTs). To test the protective nature of SAN ECMs under strain, rSANHTs and rLVHTs were transplanted onto the murine thoracic diaphragm to undergo constant cyclic strain. All strained-rSANHTs preserved automaticity, whereas 66% of strained-rLVHTs lost their automaticity. In contrast to the strained-rLVHTs, PCMs in strained-rSANHTs maintained high expression of key pacemaker genes (HCN4, TBX3, and TBX18). These findings highlight the promotive and protective roles of the composite SAN ECM and provide valuable insights for pacemaking tissue engineering.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Camundongos , Animais , Suínos , Miócitos Cardíacos/metabolismo , Ventrículos do Coração , Fenótipo
3.
Sci Rep ; 12(1): 9912, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705588

RESUMO

Many cell types migrate in response to naturally generated electric fields. Furthermore, it has been suggested that the external application of an electric field may be used to intervene in and optimize natural processes such as wound healing. Precise cell guidance suitable for such optimization may rely on predictive models of cell migration, which do not generalize. Here, we present a machine learning model that can forecast directedness of cell migration given a timeseries of previous directedness and electric field values. This model is trained using time series galvanotaxis data of mammalian cranial neural crest cells obtained through time-lapse microscopy of cells cultured at 37 °C in a galvanotaxis chamber at ambient pressure. Next, we show that our modeling approach can be used for a variety of cell types and experimental conditions with very limited training data using transfer learning methods. We adapt the model to predict cell behavior for keratocytes (room temperature, ~ 18-20 °C) and keratinocytes (37 °C) under similar experimental conditions with a small dataset (~ 2-5 cells). Finally, this model can be used to perform in silico studies by simulating cell migration lines under time-varying and unseen electric fields. We demonstrate this by simulating feedback control on cell migration using a proportional-integral-derivative (PID) controller. This data-driven approach provides predictive models of cell migration that may be suitable for designing electric field based cellular control mechanisms for applications in precision medicine such as wound healing.


Assuntos
Eletricidade , Queratinócitos , Animais , Movimento Celular/fisiologia , Estimulação Elétrica/métodos , Queratinócitos/fisiologia , Aprendizado de Máquina , Mamíferos , Cicatrização/fisiologia
4.
Infect Genet Evol ; 101: 105289, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489698

RESUMO

The risk of chronic hepatitis B (CHB) infection is often affected by polyunsaturated fatty acids (PUFAs) metabolism which is strongly influenced by single nucleotide polymorphisms (SNPs) within the PUFA metabolic pathway. Given this, we designed this study to determine the relationship between specific polymorphisms within fatty acid desaturase 2 (FADS2), a key enzyme in PUFA metabolism, and CHB infection. We completed this evaluation using a case-control study comprising 230 CHB patients and 234 unrelated healthy controls in which the genetic relationships between three previously identified SNPs, isolated via mass spectrometry, and CHB infection. Our data revealed that none of these three SNPs (rs174568, rs174601, and rs2727270) were significantly associated with susceptibility to CHB infection when compared to healthy controls. However, when we stratified our cohort by sex, male subjects with the TC genotype for FADS2 exhibited a decreased risk for CHB infection (OR = 0.62, 95%CI = 0.39-0.96; OR = 0.64, 95%CI = 0.41-1.00; OR = 0.57, 95%CI = 0.36-0.90). Furthermore, age stratification revealed that both the T allele and the TC genotypes for each of the three target SNPs were less common in Chinese CHB cases in people younger than 50 years old. Correlation analysis also revealed that there was no statistically significant relationship between these three SNPs and HBV-DNA replication or hepatitis B surface antigen (HBsAg) levels. Thus, our data suggests that rs174568, rs174601, and rs2727270 may affect the CHB outcomes in various age or sex subgroups, suggesting that they may be useful predictive or diagnostic biomarkers of CHB infection in some populations.


Assuntos
Ácidos Graxos Dessaturases , Hepatite B Crônica , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Ácidos Graxos Dessaturases/genética , Predisposição Genética para Doença , Genótipo , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
5.
J Gene Med ; 23(8): e3347, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33894044

RESUMO

BACKGROUND: The risk of chronic hepatitis B (CHB) infection is influenced by aberrant DNA methylation and altered nucleotide synthesis and repair, possibly caused by polymorphic variants in one-carbon metabolism genes. In the present study, we investigated the relationship between polymorphisms belonging to the one-carbon metabolic pathway and CHB infection. METHODS: A case-control study using 230 CHB patients and 234 unrelated healthy controls was carried out to assess the genetic association of 24 single nucleotide polymorphisins (SNPs) determined by mass spectrometry. RESULTS: Three SNPs, comprising rs10717122 and rs2229717 in serine hydroxymethyltransferase1/2 (SHMT2) and rs585800 in betaine-homocysteine S-methyltransferase (BHMT), were associated with the risk of CHB. Patients with DEL allele, DEL.DEL and DEL.T genotypes of rs10717122 had a 1.40-, 2.00- and 1.83-fold increased risk for CHB, respectively. Cases inheriting TA genotype of rs585800 had a 2.19-fold risk for CHB infection. The T allele of rs2229717 was less represented in the CHB cases (odds ratio = 0.66, 95% confidence interval = 0.48-0.92). The T allele of rs2229717 was less in patients with a low hepatitis B virus-DNA level compared to the control group (odds ratio = 0.49, 95% confidence interval = 0.25-0.97) and TT genotype of rs2229717 had a significant correlation with hepatitis B surface antigen level (p = 0.0195). Further gene-gene interaction analysis showed that subjects carrying the rs10717122 DEL.DEL/DEL.T and rs585800 TT/TA genotypes had a 2.74-fold increased risk of CHB. CONCLUSIONS: The results of the present study suggest that rs10717122, rs585800 and rs2229717 and gene-gene interactions of rs10717122 and rs585800 affect the outcome of CHB infection, at the same time as indicating their usefulness as a predictive and diagnostic biomarker of CHB infection.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Carbono/metabolismo , Glicina Hidroximetiltransferase/genética , Hepatite B Crônica/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Adenosil-Homocisteinase/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Predisposição Genética para Doença , Glicina N-Metiltransferase/genética , Hepatite B Crônica/metabolismo , Humanos , Masculino , Metionina Adenosiltransferase/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética
6.
Stem Cell Res ; 49: 102043, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128951

RESUMO

Directed cardiomyogenesis from human induced pluripotent stem cells (hiPSCs) has been greatly improved in the last decade but directed differentiation to pacemaking cardiomyocytes (CMs) remains incompletely understood. In this study, we demonstrated that inhibition of NODAL signaling by a specific NODAL inhibitor (SB431542) in the cardiac mesoderm differentiation stage downregulated PITX2c, a transcription factor that is known to inhibit the formation of the sinoatrial node in the left atrium during cardiac development. The resulting hiPSC-CMs were smaller in cell size, expressed higher pro-pacemaking transcription factors, TBX3 and TBX18, and exhibited pacemaking-like electrophysiological characteristics compared to control hiPSC-CMs differentiated from established Wnt-based protocol. The pacemaker-like subtype increased up to 2.4-fold in hiPSC-CMs differentiated with the addition of SB431542 relative to the control. Hence, Nodal inhibition in the cardiac mesoderm stage promoted pacemaker-like CM differentiation from hiPSCs. Improving the yield of human pacemaker-like CMs is a critical first step in the development of functional human cell-based biopacemakers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Marca-Passo Artificial , Potenciais de Ação , Diferenciação Celular , Células Cultivadas , Humanos , Miócitos Cardíacos
7.
Cancer Lett ; 482: 8-18, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278815

RESUMO

Hepatocellular carcinoma (HCC), a type of malignant liver tumor, has a grim prognosis. As a functional protein, synaptopodin-2 (SYNPO2) has been associated with malignancy; however, the expression profile and function of SYNPO2 in HCC remains unknown. Herein, we revealed that SYNPO2 was transcriptionally downregulated in HCC tissues from both The Cancer Genome Atlas cohort and our cohort, and was also decreased at the translational level as determined by western blotting and immunohistochemical staining. Furthermore, reduced SYNPO2 expression correlated significantly with short overall survival and recurrence free survival of HCC patients. Restoring SYNPO2 expression inhibited the proliferation and aggressiveness of hepatocarcinoma cells. Mechanistically, increasing the ratio of cytoplasmic SYNPO2 to nuclear SYNPO2 was positively associated with recurrence rate in HCC patients; calcineurin (CaN) activity positively correlated with cytoplasmic SYNPO2 levels in HCC tissues; and nuclear-cytoplasmic translocation of SYNPO2 was induced by CaN to facilitate metastasis of HCC through assembly of peripheral actin bundles. In short, our findings uncover a novel role of SYNPO2 in HCC metastasis via the CaN/SYNPO2/F-actin axis, and indicate that SYNPO2 may serve as a possible prognostic marker and novel therapeutic target.


Assuntos
Calcineurina/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Citoplasma/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Prognóstico , Transporte Proteico , Análise de Sobrevida
8.
Stem Cells ; 38(1): 90-101, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566285

RESUMO

Genetically encoded fluorescent voltage indicators, such as ArcLight, have been used to report action potentials (APs) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). However, the ArcLight expression, in all cases, relied on a high number of lentiviral vector-mediated random genome integrations (8-12 copy/cell), raising concerns such as gene disruption and alteration of global and local gene expression, as well as loss or silencing of reporter genes after differentiation. Here, we report the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease technique to develop a hiPSC line stably expressing ArcLight from the AAVS1 safe harbor locus. The hiPSC line retained proliferative ability with a growth rate similar to its parental strain. Optical recording with conventional epifluorescence microscopy allowed the detection of APs as early as 21 days postdifferentiation, and could be repeatedly monitored for at least 5 months. Moreover, quantification and analysis of the APs of ArcLight-CMs identified two distinctive subtypes: a group with high frequency of spontaneous APs of small amplitudes that were pacemaker-like CMs and a group with low frequency of automaticity and large amplitudes that resembled the working CMs. Compared with FluoVolt voltage-sensitive dye, although dimmer, the ArcLight reporter exhibited better optical performance in terms of phototoxicity and photostability with comparable sensitivities and signal-to-noise ratios. The hiPSC line with targeted ArcLight engineering design represents a useful tool for studying cardiac development or hiPSC-derived cardiac disease models and drug testing.


Assuntos
Potenciais de Ação/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Células Cultivadas , Terapia Genética , Humanos
9.
J Cell Physiol ; 233(3): 2378-2385, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28749047

RESUMO

Stationary symmetrical fish keratocyte cells break symmetry and become motile spontaneously but slowly. We found that applying electric field (EF) accelerates the polarization by an order of magnitude. While spontaneously polarized cells move persistently for hours, the EF-induced polarity is lost in a majority of cells when the EF is switched off. However, if the EF is applied for a long time and then switched off, the majority of cell move stably. Myosin inhibition abolishes spontaneous polarization, but does not slow down EF-induced polarization, and after the EF is turned off, motility does not stop; however, the cell movements are erratic. Our results suggest that the EF rapidly polarizes the cells, but that resulting polarization becomes stable slowly, and that the EF bypasses the requirement for myosin action in motility initiation.


Assuntos
Escamas de Animais/metabolismo , Movimento Celular , Polaridade Celular , Estimulação Elétrica , Células Epiteliais/metabolismo , Miosinas/metabolismo , Escamas de Animais/citologia , Animais , Células Cultivadas , Ciclídeos , Fenótipo , Fatores de Tempo
10.
Methods Mol Biol ; 1407: 251-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27271908

RESUMO

Recent studies have demonstrated distinctive motility and responses to extracellular cues of cells in isolation, cells collectively in groups, and cell fragments. Here we provide a protocol for generating cell sheets, isolated cells, and cell fragments of keratocytes from zebrafish scales. The protocol starts with a comprehensive fish preparation, followed by critical steps for scale processing and subsequent cell sheet generation, single cell isolation, and cell fragment induction, which can be accomplished in just 3 days including a 36-48 h incubation time. Compared to other approaches that usually produce single cells only or together with either fragments or cell groups, this facile and reliable methodology allows generation of all three motile forms simultaneously. With the powerful genetics in zebrafish our model system offers a useful tool for comparison of the mechanisms by which cell sheets, single cells, and cell fragments respond to extracellular stimuli.


Assuntos
Movimento Celular , Animais , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Masculino , Peixe-Zebra
11.
Nat Commun ; 6: 8532, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449415

RESUMO

Weak electric fields guide cell migration, known as galvanotaxis/electrotaxis. The sensor(s) cells use to detect the fields remain elusive. Here we perform a large-scale screen using an RNAi library targeting ion transporters in human cells. We identify 18 genes that show either defective or increased galvanotaxis after knockdown. Knockdown of the KCNJ15 gene (encoding inwardly rectifying K(+) channel Kir4.2) specifically abolishes galvanotaxis, without affecting basal motility and directional migration in a monolayer scratch assay. Depletion of cytoplasmic polyamines, highly positively charged small molecules that regulate Kir4.2 function, completely inhibits galvanotaxis, whereas increase of intracellular polyamines enhances galvanotaxis in a Kir4.2-dependent manner. Expression of a polyamine-binding defective mutant of KCNJ15 significantly decreases galvanotaxis. Knockdown or inhibition of KCNJ15 prevents phosphatidylinositol 3,4,5-triphosphate (PIP3) from distributing to the leading edge. Taken together these data suggest a previously unknown two-molecule sensing mechanism in which KCNJ15/Kir4.2 couples with polyamines in sensing weak electric fields.


Assuntos
Poliaminas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Linhagem Celular Tumoral , Eletricidade , Humanos , Transporte de Íons , Canais de Potássio Corretores do Fluxo de Internalização/genética
12.
PLoS One ; 9(9): e108606, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259715

RESUMO

The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05) were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion.


Assuntos
Brucella abortus , Brucelose Bovina/genética , Membrana Corioalantoide/microbiologia , Transcrição Gênica , Animais , Brucelose Bovina/metabolismo , Brucelose Bovina/microbiologia , Bovinos , Membrana Corioalantoide/metabolismo , Feminino , Inflamação/genética , Inflamação/metabolismo , Inflamação/microbiologia , Gravidez , Análise Serial de Tecidos , Regulação para Cima
13.
Cell Microbiol ; 15(6): 942-960, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23227931

RESUMO

Brucella are facultative intracellular bacteria that cause chronic infections by limiting innate immune recognition. It is currently unknown whether Brucella FliC flagellin, the monomeric subunit of flagellar filament, is sensed by the host during infection. Here, we used two mutants of Brucella melitensis, either lacking or overexpressing flagellin, to show that FliC hinders bacterial replication in vivo. The use of cells and mice genetically deficient for different components of inflammasomes suggested that FliC was a target of the cytosolic innate immune receptor NLRC4 in vivo but not in macrophages in vitro where the response to FliC was nevertheless dependent on the cytosolic adaptor ASC, therefore suggesting a new pathway of cytosolic flagellin sensing. However, our work also suggested that the lack of TLR5 activity of Brucella flagellin and the regulation of its synthesis and/or delivery into host cells are both part of the stealthy strategy of Brucella towards the innate immune system. Nevertheless, as a flagellin-deficient mutant of B. melitensis wasfound to cause histologically demonstrable injuries in the spleen of infected mice, we suggested that recognition of FliC plays a role in the immunological stand-off between Brucella and its host, which is characterized by a persistent infection with limited inflammatory pathology.


Assuntos
Brucella melitensis/patogenicidade , Brucelose/fisiopatologia , Flagelina/imunologia , Flagelina/metabolismo , Imunidade Inata/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Brucella melitensis/imunologia , Brucella melitensis/metabolismo , Brucelose/metabolismo , Brucelose/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Flagelina/genética , Humanos , Técnicas In Vitro , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação/genética , Baço/microbiologia , Baço/patologia , Receptor 5 Toll-Like/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-22919638

RESUMO

A large number of hypothetical genes potentially encoding small proteins of unknown function are annotated in the Brucella abortus genome. Individual deletion of 30 of these genes identified four mutants, in BAB1_0355, BAB2_0726, BAB2_0470, and BAB2_0450 that were highly attenuated for infection. BAB2_0726, an YbgT-family protein located at the 3' end of the cydAB genes encoding cytochrome bd ubiquinal oxidase, was designated cydX. A B. abortus cydX mutant lacked cytochrome bd oxidase activity, as shown by increased sensitivity to H(2)O(2), decreased acid tolerance and increased resistance to killing by respiratory inhibitors. The C terminus, but not the N terminus, of CydX was located in the periplasm, suggesting that CydX is an integral cytoplasmic membrane protein. Phenotypic analysis of the cydX mutant, therefore, suggested that CydX is required for full function of cytochrome bd oxidase, possibly via regulation of its assembly or activity.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/metabolismo , Brucelose/microbiologia , Brucelose/patologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Oxirredutases/genética , Virulência
15.
J Appl Physiol (1985) ; 111(4): 1031-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21719726

RESUMO

Damage to the respiratory epithelium is one of the most critical steps to many life-threatening diseases, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. The mechanisms underlying repair of the damaged epithelium have not yet been fully elucidated. Here we provide experimental evidence suggesting a novel mechanism for wound repair: endogenous electric currents. It is known that the airway epithelium maintains a voltage difference referred to as the transepithelial potential. Using a noninvasive vibrating probe, we demonstrate that wounds in the epithelium of trachea from rhesus monkeys generate significant outward electric currents. A small slit wound produced an outward current (1.59 µA/cm(2)), which could be enhanced (nearly doubled) by the ion transport stimulator aminophylline. In addition, inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) with CFTR(Inh)-172 significantly reduced wound currents (0.17 µA/cm(2)), implicating an important role of ion transporters in wound induced electric potentials. Time-lapse video microscopy showed that applied electric fields (EFs) induced robust directional migration of primary tracheobronchial epithelial cells from rhesus monkeys, towards the cathode, with a threshold of <23 mV/mm. Reversal of the field polarity induced cell migration towards the new cathode. We further demonstrate that application of an EF promoted wound healing in a monolayer wound healing assay. Our results suggest that endogenous electric currents at sites of tracheal epithelial injury may direct cell migration, which could benefit restitution of damaged airway mucosa. Manipulation of ion transport may lead to novel therapeutic approaches to repair damaged respiratory epithelium.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Mucosa Respiratória/fisiologia , Cicatrização/fisiologia , Animais , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Eletrodos , Células Epiteliais/metabolismo , Transporte de Íons , Macaca mulatta , Potenciais da Membrana/fisiologia , Mucosa Respiratória/metabolismo , Traqueia/metabolismo , Traqueia/fisiologia
16.
Eukaryot Cell ; 10(9): 1251-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21743003

RESUMO

Many types of cells migrate directionally in direct current (DC) electric fields (EFs), a phenomenon termed galvanotaxis or electrotaxis. The directional sensing mechanisms responsible for this response to EFs, however, remain unknown. Exposing cells to an EF causes changes in plasma membrane potentials (V(m)). Exploiting the ability of Dictyostelium cells to tolerate drastic V(m) changes, we investigated the role of V(m) in electrotaxis and, in parallel, in chemotaxis. We used three independent factors to control V(m): extracellular pH, extracellular [K(+)], and electroporation. Changes in V(m) were monitored with microelectrode recording techniques. Depolarized V(m) was observed under acidic (pH 5.0) and alkaline (pH 9.0) conditions as well as under higher extracellular [K(+)] conditions. Electroporation permeabilized the cell membrane and significantly reduced the V(m), which gradually recovered over 40 min. We then recorded the electrotactic behaviors of Dictyostelium cells with a defined V(m) using these three techniques. The directionality (directedness of electrotaxis) was quantified and compared to that of chemotaxis (chemotactic index). We found that a reduced V(m) significantly impaired electrotaxis without significantly affecting random motility or chemotaxis. We conclude that extracellular pH, [K(+)], and electroporation all significantly affected electrotaxis, which appeared to be mediated by the changes in V(m). The initial directional sensing mechanisms for electrotaxis therefore differ from those of chemotaxis and may be mediated by changes in resting V(m).


Assuntos
Quimiotaxia/fisiologia , Dictyostelium/metabolismo , Potenciais da Membrana/fisiologia , Membrana Celular/metabolismo , Movimento Celular , Eletricidade , Eletroporação , Concentração de Íons de Hidrogênio , Potássio/metabolismo
17.
Mol Microbiol ; 70(6): 1378-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19019140

RESUMO

Survival and replication inside host cells by Brucella spp. requires a type IV secretion system (T4SS), encoded by the virB locus. However, the identity of the molecules secreted by the T4SS has remained elusive. We hypothesized that proteins translocated by the T4SS would be co-regulated with the virB operon. The LuxR family regulator VjbR, known to regulate virB, bound a fragment of the virB promoter containing an 18 bp palindromic motif (virB promoter box), showing that VjbR regulated the virB operon directly. To identify virB co-regulated genes, we searched the Brucella suis 1330 and B. abortus 2308 genomes for genes with an upstream virB promoter box. One hundred and forty-four promoters in the two genomes contained the virB promoter box, including those of fliC encoding flagellin and cgs encoding cyclic beta-glucan synthetase. Thirteen of these proteins were tested for VirB-dependent translocation into macrophages using a beta-lactamase reporter assay. This analysis resulted in the identification of the proteins encoded by BAB1_1652 (VceA) and BR1038/BAB1_1058 (VceC) as novel protein substrates of the Brucella T4SS. VceC could also be translocated by the Legionella pneumophila Dot/Icm T4SS into host cells. Our results suggest that VjbR co-ordinates expression of the T4SS and at least two of its secreted substrates.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Brucella suis/metabolismo , Macrófagos/metabolismo , Regulon , Via Secretória , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Brucella abortus/genética , Brucella suis/genética , Linhagem Celular , Sequência Consenso , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transporte Proteico , Via Secretória/genética
18.
Nat Immunol ; 9(10): 1171-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18724372

RESUMO

Inflammasomes are cytosolic multiprotein complexes that sense microbial infection and trigger cytokine production and cell death. However, the molecular components of inflammasomes and what they sense remain poorly defined. Here we demonstrate that 35 amino acids of the carboxyl terminus of flagellin triggered inflammasome activation in the absence of bacterial contaminants or secretion systems. To further elucidate the host flagellin-sensing pathway, we generated mice deficient in the intracellular sensor Naip5. These mice failed to activate the inflammasome in response to the 35 amino acids of flagellin or in response to Legionella pneumophila infection. Our data clarify the molecular basis for the cytosolic response to flagellin.


Assuntos
Flagelina/imunologia , Macrófagos/imunologia , Complexos Multiproteicos/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Motivos de Aminoácidos/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Citosol , Ensaio de Imunoadsorção Enzimática , Flagelina/química , Immunoblotting , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Macrófagos/microbiologia , Camundongos , Proteína Inibidora de Apoptose Neuronal/genética , Receptor 5 Toll-Like/imunologia , Receptor 5 Toll-Like/metabolismo , Transdução Genética
19.
J Biol Chem ; 282(47): 33897-901, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17911114

RESUMO

Bacterial flagellins are potent inducers of innate immunity. Three signaling pathways have been implicated in the sensing of flagellins; these involve toll-like receptor 5 (TLR5) and the cytosolic proteins Birc1e/Naip5 and Ipaf. Although the structural basis of TLR5-flagellin interaction is known, little is known about how flagellin enters the host cell cytosol to induce signaling via Birc1e/Naip5 and Ipaf. Here we demonstrate for the first time the translocation of bacterial flagellin into the cytosol of host macrophages by the vacuolar pathogen, Salmonella enterica serotype Typhimurium. Translocation of flagellin into the host cell cytosol was directly demonstrated using beta-lactamase reporter constructs. Flagellin translocation required the Salmonella Pathogenicity Island 1 Type III secretion system (SPI-1 T3SS) but not the flagellar T3SS.


Assuntos
Flagelina/imunologia , Ilhas Genômicas/imunologia , Imunidade Inata/fisiologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Citosol/imunologia , Citosol/metabolismo , Citosol/microbiologia , Flagelina/genética , Flagelina/metabolismo , Ilhas Genômicas/genética , Camundongos , Proteína Inibidora de Apoptose Neuronal/imunologia , Proteína Inibidora de Apoptose Neuronal/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Receptor 5 Toll-Like/imunologia , Receptor 5 Toll-Like/metabolismo
20.
Infect Immun ; 73(12): 7817-26, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299271

RESUMO

Salmonella enterica serotype Typhi is a strictly human adapted pathogen that does not cause disease in nonprimate vertebrate hosts, while Salmonella enterica serotype Typhimurium is a broad-host-range pathogen. Serotype Typhi lacks some of the proteins (effectors) exported by the invasion-associated type III secretion system that are required by serotype Typhimurium for eliciting fluid secretion and inflammation in bovine ligated ileal loops. We investigated whether the remaining serotype Typhi effectors implicated in enteropathogenicity (SipA, SopB, and SopD) are functionally exchangeable with their serotype Typhimurium homologues. Serotype Typhi elicited fluid accumulation in bovine ligated ileal loops at levels similar to those elicited by a noninvasive serotype Typhimurium strain (the sipA sopABDE2 mutant) or by sterile culture medium. However, introduction of the cloned serotype Typhi sipA, sopB, and sopD genes complemented the ability of a serotype Typhimurium sipA sopABDE2 mutant to elicit fluid secretion in bovine ligated ileal loops. Introduction of the cloned serotype Typhi sipA, sopB, and sopD genes increased the invasiveness of a serotype Typhimurium sipA sopABDE2 mutant for human colon carcinoma epithelial (HT-29 and T84) cells and bovine kidney (MDBK) cells. Translational fusions between the mature TEM-1 beta-lactamase reporter and SipA or SopD demonstrated that serotype Typhi translocates these effectors into host cells. We conclude that the inability of serotype Typhi to cause fluid accumulation in bovine ligated ileal loops is not caused by a functional alteration of its SipA, SopB, and SopD effector proteins with respect to their serotype Typhimurium homologues.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/fisiologia , Proteínas dos Microfilamentos/genética , Salmonella typhi/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Bovinos , Células Cultivadas , Clonagem Molecular , Teste de Complementação Genética , Humanos , Mucosa Intestinal/microbiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Mutação , Transporte Proteico , Salmonella typhi/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...